If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+5n-13=0
a = 2; b = 5; c = -13;
Δ = b2-4ac
Δ = 52-4·2·(-13)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{129}}{2*2}=\frac{-5-\sqrt{129}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{129}}{2*2}=\frac{-5+\sqrt{129}}{4} $
| 3(2-(3x-6)-4(1-2x)=4-5x | | 2x2-5x=2 | | 8x^2-96x=256 | | x³-1=0 | | q2-256=0 | | 21-{5x-(3x-1)=5x-12 | | 2(8+-2q)-q=11 | | 4x+52+4x+52=180 | | 12c^2+c-5=0 | | 30y-130=23y+920 | | j/2+7=12- | | 2•x+9=19 | | 75=0.46*n | | 350x+35=560 | | 560=350x+35 | | n*16=24 | | 1.34x-8.2=2.62x-4.36 | | 12-7y=-9 | | 7/65=x/35 | | X+x+1+x+2=153 | | 16x-9=5(3x+2)-1 | | -8x+6=5x+10 | | 6(v+3)-2v=2(2v+2)-6 | | 3x-2/4x-1=3x/x | | X+x1+x+2=153 | | 6x+12x-8x+x=0 | | 0.02(6c-60)=-0.6(c-4) | | 6a-4a(3+6)=48 | | 5x+9(9x-2)=5 | | 8x-(2x-4)=12 | | W=3/8a | | 5z/7-2z/9=1 |